Preliminary communication

An explanation of the reactivities of π -C₃H₅Co(CO)₃ and π -C₅H₅Co(CO)₂

D.A. BROWN, H.L. CLARKE and N.J. FITZPATRICK Department of Chemistry, University College, Belfield, Dublin 4 (Ireland) (Received October 27th, 1972)

SUMMARY ,

An SCCCMO and IR study of π -C₃H₅Co(CO)₃ and π -C₅H₅Co(CO)₂ is reported, which shows that the relative reactivities depend on the electronic effects of the π -moiety and the geometry.

The SCCCMO results show that the M-C(O) total overlap population¹ of π -C₅H₅Co(CO)₂ is significantly higher than that of π -C₃H₅Co(CO)₃. This is due to two factors: (i) the electron-donating ability of the π -C₅H₅ group, (ii) the geometry of each molecule. The π -C₅H₅ group is shown to be an electron-donor and π -C₃H₅ an electron-acceptor in these compounds (see Fig.1). The Co(CO)₂ group is in the xz-plane, hence overlap between metal d_{xy} and d_{yz} orbitals and carbonyl π^* (antibonding) tangential

Fig.1. Qualitative representation of SCCCMO results.

orbitals is relatively high (the SCCCMO calculated contribution to the total metal carbonyl π_t^* overlap population of 0.098 is 0.083). The electron-donating property of the π -C₅H₅ group therefore allows the carbonyl π_t^* orbitals to accumulate electronic charge via the metal d_{xy} and d_{yz} orbitals. The Co(CO)₃ group of π -C₃H₅Co(CO)₃ is symmetrical about the z-axis, so the M(d_{xy} , d_{yz})-C(π_t^*) overlap population is much lower.

The lower carbonyl bond order of π -C₅H₅Co(CO)₂ is due to the greater carbonyl anti-bonding orbital population (particularly of the π_t^* orbitals) which strengthens the M-C bond by d- π^* overlap but weakens the C-O bond. The relatively high orbital population of the π_t^* orbitals in π -C₅H₅Co(CO)₂ supports the idea that such orbitals would cause an approaching nucleophile to be repulsed toward the positive metal centre giving a slow binuclear reaction,, whereas the relatively empty π_t^* orbitals of π -C₃H₅Co(CO)₃ would tend to act as acceptors to a nucleophile. Experimentally, it has been found that π -C₃H₅Co(CO)₃² reacts rapidly with triphenylphosphine with first-order kinetics, while π -C₅H₅Co(CO)₂³ reacts slowly with, probably, second-order kinetics. The IR results correlate with the SCCCMO⁴ calculations (Table 1).

TABLE 1

SCCCMO AND IR RESULTS

	M-C(O) overlap population	π^*_t orbital population	C–O bond order	Metal charge
SCCCMO				
π -C ₃ H ₅ Co(CO) ₃	0.213	0.038	2.984	0.172
π-C _s H _s Co(CO) ₂	0.245	0.157	2.888	0.217
	v(M-C)(cm ⁻¹) {benzene solution)	v(CO)(cm ⁻¹) (cyclohexane solution)		
IR				
π -C ₃ H ₅ Co(CO) ₃	482, 458	2068, 2000		
$\pi C_{5}H_{5}Co(CO)_{2}$	488, 475	2032, 1974		

REFERENCES

1 R.S. Mulliken, J. Chem. Phys., 23 (1953) 1841.

2 R.F. Heck, J. Amer. Chem. Soc., 85 (1963) 655.

- 3 H.G. Schuster-Woldan and F. Basolo, J. Amer. Chem. Soc., 88 (1966) 1657.
- 4 D.A. Brown and Sr. R.M. Rawlinson, J. Chem. Soc. A, (1969) 1534.